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ON THE STABILITY OF APPROXIMATION OPERATORS
IN PROBLEMS OF STRUCTURAL DYNAMICS

ROBERT E. NICKELL

Bell Telephone Laboratories, Inc., Whippany, New Jersey

Abstract'-Three direct integration schemes for the matrix equations of motion of structural dynamics-the
Newmark generalized acceleration operator, the Wilson averaging variant of the linear acceleration operator
and an averaging method based on a variational principle derived by Gurtin-are investigated for stability and
approximation viscosity. Using established techniques developed by J. von Neumann and Lax and Richtmyer,
the latter two approximation operators are found to be unconditionally stable. In addition, the constant average
acceleration version of the Newmark method is found to be unconditionally stable and to possess no attenuation
due to approximation viscosity. Truncation error due to the low-pass filtering characteristics of spatially dis
cretized systems is highly damped by the Wilson averaging and Gurtin averaging operators; all three operators
exhibit error in the period of the response which is a function of time step size.

1. INTRODUCTION

As lHE tools of analysis become more versatile, dynamic design requirements will be
treated in much the same manner as static requirements-using dynamic failure data,
accumulative damage concepts and safety margins. A particular analytical tool which has
been used extensively in static stress analysis and which offers tangible promise for evaluat
ing the dynamic response of structures is the finite element method, a direct variational
procedure based on Ritz spatial approximation [1,2].

The success of finite element methods when applied to the forced dynamic response
of structures has, for the most part, been more apparent than real. Most of the step
forward integration schemes in use today had their origins in forced response calculations
for modally decomposed systems where the primary emphasis was on the lowest natural
modes of the structure. As a result, stability problems were of minor concern; in general,
these integration schemes are conditionally stable for a step size small compared to the
natural period of a one-degree-of-freedom system. In recent years, however, direct integra
tion of the equations of motion has become the more popular approach [3,4]. In this
case, all of the natural modes implicitly influence the integration procedure at each time
step, greatly complicating considerations of convergence and stability. Practitioners of the
art who are able to judiciously select time step size in order to achieve the elusive objectives
of solution stability and reasonable computation time are scarce. Occasional spurious
results often defy careful post-computation analysis.

It would seem clear, then, that, if finite element techniques are to achieve the same
goals in dynamic stress analysis that have been achieved in static stress analysis, an im
proved rationale for treating the temporal variation should be sought.
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2. PRELIMINARIES. THE APPROXIMAnON OPERATOR

In order to discuss the finite element method in this context, it is appropriate to recall
some useful definitions and notations. For the most part, the treatment outlined here
follows closely that developed by O'Brien et at. [5], who discuss the stability analysis
originated by J. von Neumann, and the classical work of Lax and Richtmyer [6]. The
difference between these two approaches allegedly concerns the source of error in the
approximate solution and the tendency for these errors to grow without bound as the
solution is continued.

There are three distinct solutions to the initial-boundary-value problem: (1) the exact
solution ofthe governing partial differential equation; (2) the exact solution to the approxi
mate equations obtained through spatial and temporal discretization; and (3) the numerical
solution of the approximate equations, considering finite-precision arithmetic. Truncation
error is the measure of the difference between the first two solutions and round-off error
is the measure of the last solutions. The methods developed by von Neumann and those
used by Lax and Richtmyer are equally applicable to both types of error, however, since
both are eventually concerned with the spectral decomposition ofthe approximation opera
tor. It would seem that the source of the error, whether it be from initial or boundary data
that the discretized system cannot describe or from finite-precision arithmetic by the com
puter, is not as important as the spectral character of the approximation operator.

In the remainder of this work, the discussion will be limited to the displacement for
mulation of the finite element method as applied to the linear initial-boundary-value
problem ofstructural dynamics; i.e. the nodal point displacements, velocities and accelera
tions at time tn are defined in a Hilbert space H and the nodal point values at time tn + I

are related to those at tn through a linear transformation. This linear transformation,
generally a function of the time step size, !1t = tn+ I - tn' and the stiffness and inertial
properties of the structure, will be referred to as the approximation operator. (In [6] this
operator is denoted the amplification matrix.) It should be noted that the proper formula
tion of this problem requires only the one-step transformation described above; however,
the linearity of the operator implies that equivalent (in terms of spectral representation)
multi-level formulas can be deduced.

To be more precise, let u(t) be the vector in H representing the nodal point displacements,
velocities and accelerations. Through some procedure, such as applying a restricted first
variation to Hamilton's principle or through the Gurtin variational principle [7], the
matrix equation

(2.1)

is found. The matrices .Jf'o and .Jf'l and the vector F are, in general, functions of !1t and the
physical parameters of the structure. If the matrix .Jf'l can be written in triangular form,
the formula (2.1) is defined to be explicit; otherwise, the formula is implicit. The approxima
tion operator is, of course,

(2.2)

assuming that the inverse of the matrix .Jf'l exists. Then,

(2.3)



On the stability of approximation operators in problems of structural dynamics 303

where
(2.4)

If the approximation operator is consistent,t then

provides a consistent approximation to the time derivatives of u(t). The Lax Equivalence
Theorem then states that a consistent approximation operator for a properly posed
initial-boundary-value problem is convergent if and only if the approximation operator
is stable. Convergence in this sense is defined to be convergence in the norm of H. Stability
is defined in the usual way; Le. the approximation operator is uniformly bounded. The
question is thus resolved to be whether or not, for a given time step size ~t, the approxima
tion operator has bounded spectral radius.

In the sections to follow, a number of popular approximation operators are investi
gated in light of the Lax Equivalence Theorem. It should be pointed out at this time that at
least two approximation operators-the standard central difference formula and the
Houbolt backward difference operator [8J-have been investigated for stability by using
the von Neumann procedure to estimate the spectral radius. The Houbolt operator was
found to be unconditionally stable [9] while the central difference operator is condi
tionally stable [10]; Le. for a time step size larger than 4n times the shortest natural period
of the structure, the procedure is unstable. These results had been anticipated in earlier
work [11].

3. THE NEWMARK GENERALIZED ACCELERATION METHOD

A method for directly integrating the equations of motion of a structural system which
has been widely used is the Newmark generalized acceleration method [12]. The nodal
point displacements and velocities are approximated by the expressions

(3.1)

and
(3.2)

where pand'}' are the dimensionless parameters of generalized acceleration and ii(t) indi
cates the nodal point accelerations.

Chan et al. [3], have discussed the special case P= -fi, '}' = t, which coincides with a
procedure developed by Fox and Goodwin [13]. The constant average acceleration
(P = t, '}' = t) and the linear acceleration (P = i, '}' = t) methods are also special cases.

For a one-degree-of-freedom system, stability can be investigated by using the Lax
Richtmyer approach. For the case where'}' = t. the nontrivial eigenvalues ofthe approxima
tion operator are

A. _ 1+(P-l/2)~±i[e(p-*)+~-f/2/4]t
1,2 - 1+f//2+P~ ,

(3.3)

t The term consistent, in this sense, can be interpreted to mean that the difference between a power series
expansion of the time derivatives of u(t) and the approximation operator contains only quantities that vanish
as!'J.t ~o.
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where 11 = C!J.tjM and ~ = (!J.tf KIM; K, C and M are the stiffness, damping and mass of
the system.

In order for the solution to be oscillatory for the case of zero damping,

(3.4)

This same result can be obtained by taking the limit of (3.3) as the time step grows large
and insisting that the absolute value of the eigenvalues be bounded from above by unity.

Similar results can be obtained for a multi-degree-of-freedom system by using the von
Neumann method with equation (17) of [3] :

[[M] + ~t [C] + P(!J.t)2[K]}U(tn+ I)} = (!J.t)2 {P{F(tn+ d} +(1- 2P){F(tn)} + P{ F(tn- 1)}}

+ 2[[M] - (!J.t)2(! - P)[K]] {u(tn)}

-[[M]- ~t[C]+P(!J.t)2[K]}U(tn_l)}' (3.5)

To investigate stability for an undamped system, the error in the numerical solution at
time t = tn = n!J.t is assumed to be given by

(3.6)

where {d} is a vector of arbitrary nodal point errors. Defining the characteristic value

and noting that the error must satisfy the homogeneous form of equation (3.5), then

([Mr I[K] -y[I]){d} = 0,

where

(3.7)

(3.8)

(3.9)

But (3.8) can be recognized as the characteristic equation for the natural frequencies of the
finite element system. Then, since all these frequencies are real and positive (or zero for
rigid body modes) for the finite element formulation, the eigenvalues of the approximation
operator can be determined, in pairs, as functions of the time step size !J.t and each of the
system natural frequencies:

A. _ 1+(P -t)W2(!J.t)2 ± i[(P-i)w4(!J.t)4 +W2(!J.t)2]t
1,2 - 1+PW2(!J.t)2 . (3.10)

The condition that the spectral radius be bounded dictates that the Newmark method
is unconditionally stable provided that P2 t as before. This result was obtained by a
different procedure in [12J for a one-degree-of-freedom system.

The eigenvalues of the approximation operator can be written in polar form for P= *as

A. = Re±ilJ1,2 , (3.11)
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where

_ 1 ( w!:it )
R = 1, e = tan 1-!w2(At)2' (3.12)

which shows that there is no artificial or inherent damping in the approximation operator.
In an effort to verify the results obtained in this and subsequent sections, the various

approximation operators under consideration were used to solve a simple one-degree-of
freedom problem-that of a linear oscillator subjected to a step force in time. The exact
solution is

F
u(t) = Q~[l-cosQt], (3.13)

where u is the displacement, Fo is the applied force, Q is the natural frequency for a unit
mass and the initial conditions have been chosen to be quiescent.

A comparison between the exact solution and the constant average acceleration
approximation operator is shown in Figs. 1-3 for time step sizes At = 0·2, 0·5 and 1·0.
The agreement between maximum and minimum values generated by the numerical
solution and the exact solution verify the lack ofdamping in this operator; there is an error
in the vibratory period, however, as indicated by (3. 12b). To illustrate this, the exact
solution to the difference equation is

(3.14)

EXACT SOLUTION

~ NEWMARK lolETHOD, M'O.2,.e' 1/4, Y'1/2
(CONSTANT AVERAGE ACCELERATION)

2.,.--------:l~---------__r---------___:fiI'~-----___,

20.15.5. 10.

TIME .... f

FIG. 1. Comparison of Newmark operator (jJ = !) to exact solution for tJ.t = 0·2.
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EXACT SOLUTION

~ NEWMARK METHOD,t.t-O.5,f3=1I4,y·1I2
(CONSTANT AVERAGE ACCELERATION)

2 ...------~....:----------~*---------____..:~-----__,

20.15.5. 10.

TIME .... t

FIG. 2. Comparison of Newmark operator (fJ 1) to exact solution for 81 = 0·5.
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EXACT SOLUTION

~ NEWMARK METHOD,lIt-t.O,j!I,"4,y-1/2
(CONSTANT AVERAGE ACCELERATION)

2..------~il:o<--------------.,__Q",---------~......,_;I"__----__,

20.15.5. 10.

TIME .... t

FIG. 3. Comparison of Newmark operator (fJ Hto exact solution for 81 = 1·0.
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or, using (3. 12a) and noting that

(etn) . (etn)u(tn) = A' cos At +B' sm ~t ' (3.15)

(3.16)m = 0,1,2, ....

where the constants A' and B' are determined from the initial conditions. The maxima and
minima of equation (3.15) will occur for

etn
-= mrr
~t '

or at

(3.17)
At(mrr)

tn = -()-.

Calculating efrom (3.12b) for ~t = 1, the maximum which occurs at 3rr in the exact solution
is shifted to t == 10·15 in the exact difference solution while the minimum at 4rr is shifted
to t = 13·54. The numerical solution was not obtained at these points but these values
are in essential agreement with the faired curve of Fig. 3.

4. THE WILSON AVERAGING OPERATOR

A modification of the linear acceleration method has been successfully applied to a
large class of plane [14] and axisymmetric [15] wave propagation problems. The matrix
equation of motion for the system is written at time t = tn + 1; then, the nodal point accelera
tions are assumed to vary linearly in the interval (tn, tn+ 1). This implies that the nodal
point displacement vector is expanded as a cubic with coefficient vectors defined in terms
of initial values (at t = tn) of the displacement, velocity, and acceleration and the unknown
displacements at tn + 1. Then

u(r) = Bo+(r-tn)B1+t(r-tn)2B2+-t(r-tn)3B3 (4.1)

or

(4.2)

(4.3)

where tn ::;; r::;; tn + 1 .

Taking appropriate time derivatives and evaluating the results at time r = tn + 1 gives
expressions for the nodal point velocities and accelerations

. 3 3 . At
U(tn+l) = to<tn+1)- Atu(tn)-2li(tn)-~(tn)

(4.4)
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If(4.4) is solved for u(tn + 1) and substituted into (4.3), the resulting expressions are identical
to the Newmark operator with y = t and p = t;. Since the linear acceleration method can
be shown to be conditionally stable, the operator was modified to reflect midpoint values at

(4.5)

From (4.2)

(4.6)

(4.7)

and

(4.8)

Equation (4.6) can be solved for u(tn + 1) and these nodal point displacements eliminated
from (4.7) and (4.8). Then

(4.9)

and

(4.10)

The stability of this approach can be investigated using the Lax-Richtmyer procedllre.
The characteristic equation for the case of zero damping is

,P(l +i~)3 - J1.2(l +i~)2H+is~) + 2(l +i~)(2 +fi~+~~2)- H+l6~ + 18e +rhs~3) = O.

(4.11)

Following the steps outlined in [9], the spectral radius of the approximation operator can
be shown to be bounded by unity, providing a sUfficient condition for stability.

The moduli of the eigenvalues of the characteristic equation (4.11) are plotted in
Fig. 4 vs. the time parameter ~. These plots indicate the attenuation in the approximation
operator but give no information about period error. The results of applying the Wilson
averaging operator to the one-degree-of-freedom problem described in the previous
section are shown in Figs. 5--7 (note that the solution increment size is one-half the time
step size; this is due to finding the solution at the center of the interval and using these
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FIG. 4. Eigenvalue moduli for Wilson averaging operator.

values as initial conditions for the next step). The attenuation and period error are strong
functions of the time step size as can be seen from these plots.

5. THE GURTIN VARIATIONAL METHOD

Another method, which is based on Ritz approximation in both the space and time
variables, has been developed for application to thermoelastic [16] and thermoviscoelastic

EXACT SOLUTION

-- WILSON AVERAGING OPERATOR,t.t·0.2(0.41

2.r------..,....,--------------:~---------""__7~--------.

...
z I....
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u
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5. 10. 15.

TIME .... t

FIG. 5. Comparison of Wilson averaging operator to exact solution for !it = 0·2 (04).
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EXACT SOLUT ION

~ WILSON AVERAGING OPERATOR, At. 0.5(1.0)

2 ..---------,,.......--------------,,...,....-------------,......--------,
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5. 10.

TIME .... f

15. 20.

FIG. 6. Comparison of Wilson averaging operator to exact solution for ~ = 0·5 (l·0).

EXACT SOLUTION

_ WILSON AVERAGING OPERATOR,AI' 1.0 (2.0)
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FIG. 7. Comparison of Wilson averaging operator to exact solution for ~t = 1·0 (2·0).
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[17] wave propagation problems. Since the foundations of the method were first discussed
by Gurtin in his now classical treatment ofelastodynamics through operational variational
principles [7], reference will be to the Gurtin method.

For the problems of structural dynamics, the governing equations of motion are given
in matrix form by

[M] {u(t)} +[C]{u(t)} +[K]{ u(t)} = {F(t)} , (5.1 )

(5.2)

where [M], [C] and [K] represent the mass, damping and stiffness matrices, respectively,
and {u(t)}, {u(t)} and {ii(t)} denote the nodal point displacements, velocities, accelerations
and forces, respectively. Taking the Laplace transform (5.1), solving for the transformed
nodal point displacements, and inverting gives

[M] {u(t)} + g'*[C] {u(t)} + g*[K] {u(t)}

= g*{F(t} + [M] {u(O)} + t[M] {u(O)} + t[C] {u(O)},

where {u(O)} and {u(O)} are the initial nodal point displacements and velocities; the functions

g(t) = t, g'(t) = 1; (5.3)

and the convolution of two functions of time is defined by

(f*g)(t) = {f(t - r)g(r) dr. (5.4)

Equation (5.2) is applicable to step-forward integration schemes provided that the time
interval (0, t) is interpreted to be (tn, tn+ d. Then, using a quadratic polynomial assumption
for the displacement field in time (constant acceleration) similar to that described in [16J,
the equations of motion can be written

(5.5)

The stability of these equations may be investigated in a simple way by developing the
approximation matrix for a one-degree-of-freedom system. Then, the non-trivial eigen
values for this operator (neglecting damping) are

A. _ 1-t~±i[~-&eJt
1,2 - 1+b~ (5.6)

These expressions indicate that the spectral radius for this approximation operator is
unbounded for any nonzero value of Lit, implying unconditional instability. To verify this,
the numerical and exact solutions for the one-degree-of-freedom system subjected to step
load are shown in Fig. 8, indicating error growth which, if the numerical solution were
continued, would become infinite.
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20.15.5. 10.
TIME .••• t

FIG. 8. Comparison of unconditionally unstable operator to exact solution for At = 0·2.

-- EXACT SOLUTION

~GlJRTIN METHOD

o

2.

o

A slight alteration ofthis operator, which was introduced in (17], is similar to the Wilson
averaging method in that the numerical solution is sought at middle of the time interval

(5.7)

so that

The stability of these equations can be investigated in two ways, as previously indicated.
Using the Lax-Richtmyer procedure for a one-degree-of-freedom system, the non-trivial
eigenvalues of the approximation operator are found to be

(5.9)
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When the time step size is allowed to grow large, these eigenvalues become A. = -! and
- 1 ; this indicates that the spectral radius remains finite as the time step grows large,
implying that the procedure is unconditionally stable.

These eigenvalues can be written in terms of modulus and phase as

where

and

l - R e±i6
""1.2 - ,

() _ t - 1 {[*~-~e- -h,,2 +~~]i}
- an 1 1 .

1+TI"-TO~

(5.10)

(5.11 )

(5.12)

Expressions (5.11) and (5.12) can be used to study the artificial damping present in the
approximation operator, even in the absence of structural damping, and its effect on
signal attenuation and dispersion. Consider the solution of the one-degree-of-freedom
problem previously described. Let t = 0·4, K = M = t, C = 0; then ~ = ().16 and" = O.
As a result,

R == 0·997; e == 0·202.

Since the modulus is supposed to be unity and the angle increment per time step is

tw~t = 0·2,

(5.13)

(5.14)

the numerical solution appears to exhibit only slight attenuation and dispersion in each
time step. The cumulative effects are more striking, however. After one hundred time steps
the attenuation can be estimated from the relation

R 'OO == (0.997)100 = (1-0.003)'00

== 1-(100)(0·003) = 0·7,
(5.15)

indicating a substantial amount of cumulative artificial damping. Figure 9 can be used to
visually verify (5.15).

One possible way to circumvent the artificial damping is to introduce compensatory
damping analogous to the derivation in [18]. Returning to (5.11), the modulus can be unity
only if

"=-ti~ or ,,= -3-i~. (5.16)

This implies that, in the absence of structural damping in a one-degree-of-freedom system,
there should be damping equivalent to (choosing the smaller negative root)

C = --M~t)K. (5.17)

The results of applying this damping to the test problem can be seen in Figs. 9-11 ; the
numerical solutions with and without compensatory damping are compared to the exact
solution.
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EXACT SOLUTION

~ GURTIN AVERAGING OPERATOR, t:.I·0.4, CoO.

~ GURTIN AVERAGING OPERATOR. t:.t=0.4, C.-1/30

o
u.

.;;
c:
::>

....
z I.
UJ
~
UJ
U
c{

-'
'"'"o

,-------..--_._-------

20.5.
O.""- -.Ji----=_'----------' _"'"iII"------' -..;:_.--'

O.

__ EXACT SOLUTION

_ GURTIN AVERAGING OPERATOR, 6t -1.0, C-0.

~ GURTIN AVERAGING OPERATOR. 6t - 1.0, C--l1l2

2. ,---------,_.------

....
z I.
UJ
~
UJ
U
c{

-'

'"'"o

O.IL- L-----=..<-- L- ~...... L_ ....:lIo.,Q...__l

O. 5 2Q

TIME .,

FIG. 10. Comparison of Gurtin averaging operator (with and without compensatory damping) to exact
solution for ~I = 0·5 (1·0).
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EXACT SOLUTION

<HH> GURTIN AVERAGING OPERATOR.At'2.0. CoO.

~ GURTIN AVERAGING OPERATOR.At·2.0.C.-l/6

2 ..-----~.......,..--------~~.,.._-------""7""0.......,,__---___,

....
z I.....
~....
u
«
..J...
~
o

O.~ ~_-",~ -L. ---""":...:>oo<t<..-_-,- .-...-,

O. 5. 10. 20.

TIME .... t

FIG. 11. Comparison of Gurtin averaging operator (with and without compensatory damping) to exact
solution for t:.t 1·0 (2·0~

The stability of the Gurtin averaging operator can be investigated easily for multi
degree-of-freedom systems by using the von Neumann procedure. First, the governing
equation (5.8) is written in an equivalent form which eliminates the velocities and intro
duces the displacements at time tn-I' Then

(5.18)

Following the same steps as those used in the stability calculations for the Wilson averag
ing operator, the characteristic equation for the error becomes

(5.19)

where

(5.20)
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(5.21)

Since w represents the natural frequencies ofthe system, eigenvalue pairs for the approxima
tion operator which correspond to these frequencies are found to be:

A. _ l-rt,(At)2w2±tii[36(At)2W2 _ft(At)4W4J-!
1,2 - 1+ti(At)2W2

Note the agreement between (5.9) and (5.21). This result implies that the Gurtin averaging
method is unconditionally stable, since the selection of an arbitrarily large time step size
does not yield an unbounded spectral radius for the approximation operator.

6. CONCLUSIONS

The stability of three widely used temporal approximation operators-the Newmark
generalized acceleration method, the Wilson averaging method and the Gurtin averaging
method-has been investigated. These three methods and two other procedures which
have previously been examined-the central difference method [10J and the Houbolt
method [9J----eonstitute the bulk of the algorithms being used today for the computation
of structural dynamic response. Four of these methods are found to be unconditionally
stable for all values of time step size: (1) the Houbolt backward difference formula; (2) the
constant average acceleration version of the Newmark method; (3) the Wilson averaging
method; and (4) the Gurtin averaging method. An added feature of the constant average
acceleration method is that this operator contains no artificial attenuation, although some
vibratory period error in the numerical solution occurs. Approximation operators (3) and
(4) above contain both artificial attenuation and period error which are functions of the
time step size and the natural structural frequencies of the system. A procedure to eliminate
the artificial attenuation ofthe Gurtin averaging method by introducing negative damping,
at least on single-degree-of-freedom systems, has been detailed.

Finally, it should be noted that, for modally uncoupled forced response calculations,
there is little to choose between the various procedures; an explicit form, such as the central
difference formula, whose stability can be controlled by an appropriate choice of time step
size, is probably more economical and as accurate as any of the implicit formulas given
here. When direct integration of the equations of motion is called for, however, a con
servative estimate of the highest natural structural frequency of the system under study is
required in order to assure the stability of the numerical solution; in this case, the time step
limitation for a conditionally stable integration scheme may be prohibitive. A more reason
able procedure might be to use an unconditionally stable implicit scheme, such as one of
the four mentioned previously, recognizing that artificial damping may distort the higher
frequency components of the response (over-damping these modes in many instances).
A proper understanding of the effects ofartificial damping from the approximation operator
should enable such results to be interpreted meaningfully.
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APPENDIX

For the Newmark generalized acceleration method:

~ [~
C M

·Jf'1 -,At 1
0 - f3(~t)2

f o ~ [~
0

o l~t(1-y)

~t (~t)2(t - fJ)

ro.,lj
u(tn+ d = u(tn+d ,

u(tn+ d

rol
}U(tn) = U(tn) ,

U(tn)

F= r~·.l},
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1+ 1'11 M[l + 11(1' - 13)] (Llt)2[ (~- 13) +11(1'; - 13)]
1 1'~

1+~(13-1') Ll{(1-1') + ~(f3 -~) ]d=
1 +1'11 + f3~ M

~ (11 +~)
- [11(1-~) + ~H- 13)]- (Llt)2

---
Llt

and

{

f3(Llt)2}
G = 1 Llt F(tn+ 1)

l+1'l1+f3~ l' M'
1

where 11 = CM/M and ~ = [(M)2 K]/M. The quantities K, C and M are the stiffness,
damping and mass of a one-degree-of-freedom system.

For the Wilson averaging operator:

K C M 0 0 0

0
2

0 0 0--
M

3
-- 0 0 0 0

M
,~= -------_. __ ._---------- .--------------------.

1 0 0 0 0-8

3
0 0 0 0--

4M

3
0 0 0 0-(M)2

0 0
3 7 3 3

-- 8 -- -(M)2Llt 4M

X"l; = 0
2 3M 1 3

-- -2 - "4 --
M 8 Llt

0 -1
M (Llt)2 Llt 1

2 16 8
-z

UT(tn+ 1) = <Un+1, Un+1, Un+1 : Urn' Um, Um),

UT(tn) = <Un, Un' Un),

and

d = X"O(2)-X"1(21)X"ldl)X"o(l)'
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For the original Gurtin operator:

[ M +(~~ZK] 0

- 2 Li.t

o

o
0 0 0

[ M - 1
5
2(Li.t)Z K] (Li.t{M - (~~2K] 0

Jr"o = -2 -Li.t 0

0 0

and

(1- :l) Li.t( 1- 112e ) 0

d =_1_
1
_ e (l-!e) 0

1+TIe Li.t

0 0 (1 + lze)

For the Gurtin averaging operator:

[(1+"'+(,<) 0

~l-4 Li.t

0 0

[(1 +1>I-1.() t(Li.t)(1 +tzry)

~l-4 -Li.t

0 0
and

l(1 +~rye~e)2Li.t
o

t(Li.t)(l-tzry)

(1-!ry -lze)

o
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A6cTpaKT-C QeJIblO onpe.D;eJIeHHlI YCToA'IHBOCTH H npH6JIHlKeHHoi!: B1I3KOCTH, HCCJIe.D;YIOTClI TpH Heno

Cpe.D;CTBeHHble cxeMbI HHTerpHpOBaHHlI MaTpH'IHblX ypoBHeHHA .D;HHaMHKH COOPYlKeHHA.

A HMeHHO: 0606ureHHblA onepaTOp yCKOpeHHlI HblOMapKa, BapHaHT ycpe.D;HeHHlI JIHHeAHOro onepaTopa

yCKOpeHHlI BHJIbCOHa H MeTO.D; ycpeil,HeHHlI, OCHOBaHHblA Ha BapHaQHOHHOM npHHQUlle, npe,!J;JlOlKeHHblM

rlOpTHHOM. liCnOJIb3Yll MeTO.D;bI pemeHHJI, npe,!J;JlOlKeHHble t:i. «1l0H HeAMaHOM H PHxTMeepoM OKa3bI

BaeTClI, 'ITO nOCJle.D;HHe .D;Ba npH6JIHlKeHHble onepaTopbI HeyCJIOBHO cTa6oJIbHbI. B .D;06aBJIeHHH HaXO.D;HTClI

TaKlKe, 'ITO MOAHcIIHKaQHlI nOCTOJlHHOrO yCKOpeHHJI .D;JIlI MeTO.D;a HblOMapKa HeyCJIOBHO cTa6HJIbHa H He

3aTyxaeT BCJIe.D;CTBHe npH6JIHlKeHHOA B1I3KOCTH. norpeWHOCTb oT6paCbIBaHHJI BCJIe.D;CTBHe xapaKTepHCTHK

nponycKaHHlI HH3KHX 'IaCTOT ,!J;JlJl npOCTpaHCTBeHHO .D;HCKpeTHbIX CHCTeM OKa3bIBaeTClI BbICOKO .D;eMocllH

pOBaHHall onepaTopaMH ycpeAHeHHJI BHJIbCOHa H rlOpTHlIa. Bee TPH onepaTopbI .D;alOT norpemHOCTb B

nepHO.D; .D;eACTBHlI peaKQHH B BH.D;e CKO'lKOo6pa3I1oA cIIYHKQHH BpeMeHH.


